Smart Grid Load Forecasting

نویسنده

  • Akash K Singh
چکیده

Electrical load modeling and forecasting are critically important in the electrical network and smart grid. The sparse Bayesian Learning (SBL) algorithm can be utilized to model and forecast the electrical load behavior. The SBL algorithm can solve a sparse weight vector with respect to a kernel matrix for modeling electricity consumption. However, traditional SBL can only handle an electricity consumption record of one user at a time period. In this paper, we propose a joint SBL algorithm to model and forecast multiusers' electricity consumption at multiple time periods. The spatial and historical similarity in multi-users' electricity consumption records are exploited and integrated in the joint SBL algorithm for accurate prediction and good modeling. Experimental results based on real data show that the proposed joint SBL algorithm can produce much better prediction accuracy than the traditional SBL algorithm. KeywordsAdvanced metering infrastructure (AMI), communication technologies, quality-ofservice (QoS), smart grid, standards

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Load Forecasting in a Smart Grid through Customer Behaviour Learning Using L1-Regularized Continuous Conditional Random Fields

Load forecasting plays a critical role in Smart Grid. As there have been various types of customers with different behaviours in a Smart Grid, it would benefit load forecasting if customer behaviours were taken into consideration. This paper proposes a novel load forecasting method that efficiently explores customers’ power consumption behaviours through learning. Our method uses L1-CCRF to ini...

متن کامل

Assessment of an Adaptive Load Forecasting Methodology in a Smart Grid Demonstration Project

This paper presents the implementation of an adaptive load forecasting methodology in two different power networks from a smart grid demonstration project deployed in the region of Madrid, Spain. The paper contains an exhaustive comparative study of different short-term load forecast methodologies, addressing the methods and variables that are more relevant to be applied for the smart grid depl...

متن کامل

Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro Grids

Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is eas...

متن کامل

Towards Accurate Electricity Load Forecasting in Smart Grids

Smart grids, or intelligent electricity grids that utilize modern IT/communication/control technologies, become a global trend nowadays. Forecasting of future grid load (electricity usage) is an important task to provide intelligence to the smart gird. Accurate forecasting will enable a utility provider to plan the resources and also to take control actions to balance the supply and the demand ...

متن کامل

Short-Term Load Forecasting Based on the Analysis of User Electricity Behavior

The smart meter is an important part of the smart grid, and in order to take full advantage of smart meter data, this paper mines the electricity behaviors of smart meter users to improve the accuracy of load forecasting. First, the typical day loads of users are calculated separately according to different date types (ordinary workdays, day before holidays, holidays). Second, the similarity be...

متن کامل

Forecasting Electricity Price Using Seasonal ARIMA model and Implementing RTP Based Tariff in Smart Grid

-A Smart Grid has a two-way digital communication system and it encourages customers to actively participate in different types of Demand Response (DR) programs. In the Smart Grid market, both the supplier and broker agent earn profit while distributing the electrical energy. They have to balance the supply and demand during the distribution of energy. They also participate in energy trading to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012